Fragmented Markets and the Proliferation of Small Firms: Evidence from Mom-and-Pop Shops in Mexico

Daniel Ramos-Menchelli danielramos@g.harvard.edu

Diana Sverdlin Lisker dianasl@mit.edu

Oct 3, 2022

- Retail is a key sector of the economy: employment and consumption

- Retail is a key sector of the economy: employment and consumption
- Different market structure across the world:
 - Mexico: traditional mom and pop shops. 1 store per 100 people
 - Indonesia: traditional stores. 1 store per 80 people
 - US: convenience stores. 1 store per 2,200 people

- Retail is a key sector of the economy: employment and consumption
- Different market structure across the world:
 - Mexico: traditional mom and pop shops. 1 store per 100 people
 - Indonesia: traditional stores. 1 store per 80 people
 - US: convenience stores. 1 store per 2,200 people
- Why are developing countries characterized by a prevalence of **small firms** in retail sector?
 - We explore one demand-side factor \Rightarrow consumer transport costs

- Retail is a key sector of the economy: employment and consumption
- Different market structure across the world:
 - Mexico: traditional mom and pop shops. 1 store per 100 people
 - Indonesia: traditional stores. 1 store per 80 people
 - US: convenience stores. 1 store per 2,200 people
- Why are developing countries characterized by a prevalence of small firms in retail sector?
 - We explore one demand-side factor ⇒ consumer transport costs
- We ask: how do increases in transport costs affect the number, size and quality of small firms?

Why do consumer transport costs matter?

- Determine relevant market size
 - As consumer transport costs $\downarrow \Rightarrow$ consumer base \uparrow and greater spatial competition.

Why do consumer transport costs matter?

- Determine relevant market size
 - As consumer transport costs $\downarrow \Rightarrow$ consumer base \uparrow and greater spatial competition.
- Market size matters for selection of entering firms
 - As market sizes ↑ ⇒ firms who enter have higher quality

What we do

- 1. Why are there many small firms in developing countries?
 - Spatial model: link between transport costs and market structure.
 - Empirical strategy: using data on universe of m&p shops in Mexico, exploit liberalization of gas prices as natural experiment for changes to consumer transport costs
 - Transport costs ↑⇒ num stores ↑ average size ↓ aggregate quality ↓
 - Mechanism: fragmentation

What we do

- 1. Why are there many small firms in developing countries?
 - Spatial model: link between transport costs and market structure.
 - Empirical strategy: using data on universe of m&p shops in Mexico, exploit liberalization of gas prices as natural experiment for changes to consumer transport costs
 - Transport costs ↑⇒ num stores ↑ average size ↓ aggregate quality ↓
 - Mechanism: fragmentation
- 2. Welfare implications of regularization program in Mexico City which increases costs of entry for m&p shops.
 - Increasing fixed costs leads to less firms but higher quality ones
 - Consumer and producer surplus decrease
 - In a world with high transport costs, larger negative impacts on welfare

Literature Review

- Constraints to firm growth:
 - Supply side: De Mel et al. (2008); Banerjee et al. (2019); Bassi and Nansamba (2022); Field et al. (2010); De Mel et al. (2014); McKenzie (2017); McKenzie and Sakho (2010); Campos et al. (2018).
 - Demand side: Syverson (2004a,b); Lagakos (2016); Goldberg and Reed (2020); Jensen and Miller (2018); You (2021)

Contribution: transport costs relevant demand side constraint for firm growth

Literature Review

- Constraints to firm growth:
 - Supply side: De Mel et al. (2008); Banerjee et al. (2019); Bassi and Nansamba (2022); Field et al. (2010); De Mel et al. (2014); McKenzie (2017); McKenzie and Sakho (2010); Campos et al. (2018).
 - Demand side: Syverson (2004a,b); Lagakos (2016); Goldberg and Reed (2020); Jensen and Miller (2018); You (2021)

Contribution: transport costs relevant demand side constraint for firm growth

- Firms in the retail sector
 - Atkin et al. (2018); Higgins (2018); Marcos (2022); Anderson et al. (2022)

Contribution: novel micro-level data in the service sector in a developing country

Literature Review

- Constraints to firm growth:
 - Supply side: De Mel et al. (2008); Banerjee et al. (2019); Bassi and Nansamba (2022); Field et al. (2010); De Mel et al. (2014); McKenzie (2017); McKenzie and Sakho (2010); Campos et al. (2018).
 - Demand side: Syverson (2004a,b); Lagakos (2016); Goldberg and Reed (2020); Jensen and Miller (2018); You (2021)

Contribution: transport costs relevant demand side constraint for firm growth

- Firms in the retail sector
 - Atkin et al. (2018); Higgins (2018); Marcos (2022); Anderson et al. (2022)

Contribution: novel micro-level data in the service sector in a developing country

- Transport costs:
 - Market integration: Donaldson (2018); Banerjee et al. (2020)

Contribution: high-frequency data to see micro shocks and short-term outcomes

Roadmap

Motivation

Context

Conceptual Framework

Data

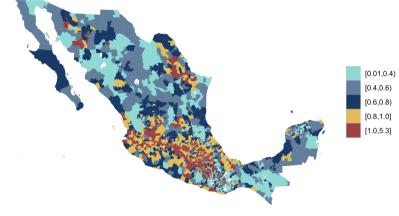
Empirical Analysis

Market Structure

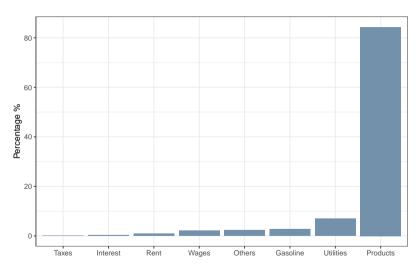
Selection of firms

Market Fragmentation

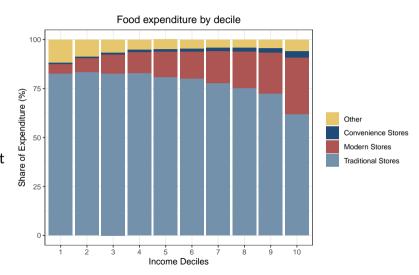
Mexico City Policy


Conclusion

 7% of GDP and 83% of employment in food and beverage sector


Typical M&P shop

- 7% of GDP and 83% of employment in food and beverage sector
- 15% of all micro firms


Stores per 1000 people

- 7% of GDP and 83% of employment in food and beverage sector
- 15% of all micro firms
- Highest operating cost is buying products

Expenses of mom-and-pop shops

- 7% of GDP and 83% of employment in food and beverage sector
- 15% of all micro firms
- Highest operating cost is buying products
- Represent large share of expenditure for households

Roadmap

Motivation

Context

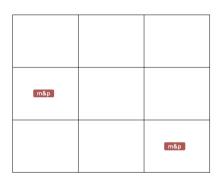
Conceptual Framework

Data

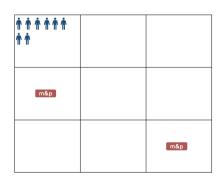
Empirical Analysis

Market Structure

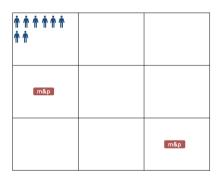
Selection of firms

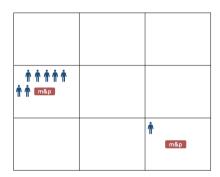

Market Fragmentation

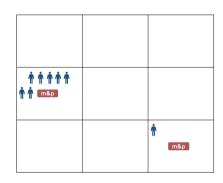
Mexico City Policy


Conclusion

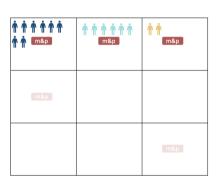
- City with N blocks $i, j \in \{1, ..., N\}$


- City with N blocks $i, j \in \{1, ..., N\}$, at most one m&p shop in every block.


- City with N blocks i, j ∈ {1, ..., N}, at most one m&p shop in every block.
- Mass *M_i* of consumers, decide where to buy 1 unit of homogeneous bundle at price *p* → prices in data


- City with N blocks i, j ∈ {1, ..., N}, at most one m&p shop in every block.
- Mass M_i of consumers, decide where to buy 1 unit of homogeneous bundle at price p → prices in data
 - Utility of consumer: $u_{ij}(\omega) = rac{\gamma_j \epsilon_{ij}(\omega)}{p au_{ij}}$

- City with *N* blocks *i*, *j* ∈ {1, ..., *N*}, at most one m&p shop in every block.
- Mass *M_i* of consumers, decide where to buy 1 unit of homogeneous bundle at price *p* → prices in data
 - Utility of consumer: $u_{ij}(\omega) = rac{\gamma_j \epsilon_{ij}(\omega)}{p au_{ij}}$
 - Consumers value "convenience" and quality


- City with *N* blocks *i*, *j* ∈ {1, ..., *N*}, at most one m&p shop in every block.
- Mass *M_i* of consumers, decide where to buy 1 unit of homogeneous bundle at price *p* → prices in data
 - Utility of consumer: $u_{ij}(\omega) = rac{\gamma_j \epsilon_{ij}(\omega)}{p au_{ij}}$
 - Consumers value "convenience" and quality
- Firms characterized by quality γ_j and fixed cost F_j
 - Observe potential demand and make entry decision

- City with *N* blocks *i*, *j* ∈ {1, ..., *N*}, at most one m&p shop in every block.
- Mass *M_i* of consumers, decide where to buy 1 unit of homogeneous bundle at price *p* → prices in data
 - Utility of consumer: $u_{ij}(\omega) = rac{\gamma_j arepsilon_{ij}(\omega)}{
 ho au_{ij}}$
 - Consumers value "convenience" and quality
- Firms characterized by quality γ_j and fixed cost F_j
 - Observe potential demand and make entry decision
- Eq: set of firms that open and have positive profits and the rest that do not want to enter

- City with *N* blocks *i*, *j* ∈ {1, ..., *N*}, at most one m&p shop in every block.
- Mass *M_i* of consumers, decide where to buy 1 unit of homogeneous bundle at price *p* → prices in data
 - Utility of consumer: $u_{ij}(\omega) = rac{\gamma_j \epsilon_{ij}(\omega)}{p au_{ij}}$
 - Consumers value "convenience" and quality
- Firms characterized by quality γ_j and fixed cost F_j
 - Observe potential demand and make entry decision
- Eq: set of firms that open and have positive profits and the rest that do not want to enter
- → As transport costs increase, markets become fragmented.

Roadmap

Motivation

Context

Conceptual Framework

Data

Empirical Analysis
Market Structure
Selection of firms
Market Fragmentation

Mexico City Policy

Conclusion

Data: firms

Partnered with the largest bread and snack company in Mexico that supplies products to the universe of mom and pop shops

- Catalog of firms contains:
 - ~ 1.5 million m&p shops over whole sample. ▶ Representativeness
 - Latitude and longitude of firm.
- Sales data from upstream supplier to (or input purchases by) each m&p shop
 - 20 million observations
 - Monthly data from 2017-2020
 - Sales in Mexican pesos
 - Number of items sold
- ► Summary Stats

Data: other sources of data

- Gas price data
 - Daily price at pump from 2017-2020.
 - Location of gas stations.

- ENIGH

- Household income and expenditure survey: 2016, 2018, 2020.
- 100,000 households surveyed.
- Census data for 2010
 - Number of households and population at census tract level.
 - Years of schooling, access to health, household's characteristics at municipality level.
- Underlying CPI data
 - Data at the store-by-barcode level
- Social Security data
 - Wages and employment for the universe of formal workers

Roadmap

Motivation

Context

Conceptual Framework

Data

Empirical Analysis

Market Structure

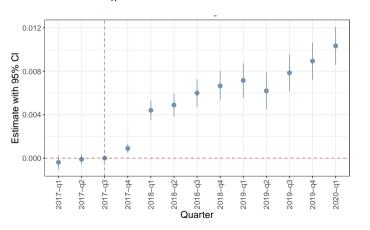
Selection of firms

Market Fragmentation

Mexico City Policy

Conclusion

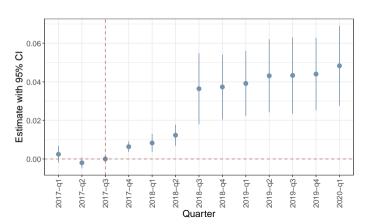
Consumer Transport Cost Shock


- Shock to consumer transport costs: Exploit deregulation of gas prices in Q4 of 2017
 - Mexico opened the gasoline market for the first time and allowed prices to fluctuate
- Instrument: use ex-ante distance to closest gasoline distribution center
 - Places further away experienced larger increase in gas prices due to additional logistics cost
- We estimate event studies:

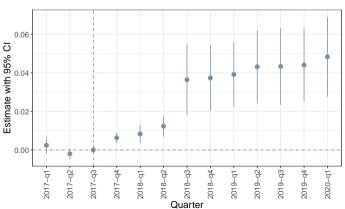
$$Y_{mt} = \alpha_m + \delta_t + \sum_{k} \beta_k (dist \widehat{Near} DC_m \times \mathbb{1}[t=k]) + \gamma_0 X_{m0} + \epsilon_{mt}$$

- *m* municipality fixed effects, *t* quarter fixed effects
- cluster standard errors at municipality level

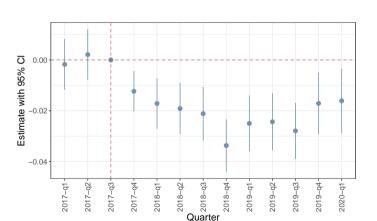
First stage


$$log(\textit{gasPrice}_{\textit{mt}}) = \alpha_{\textit{m}} + \delta_{\textit{t}} + \sum_{\textit{k}} \frac{\beta_{\textit{k}}}{\beta_{\textit{k}}} (\log(\textit{distDistrCntr}_{\textit{m}}) \times \mathbb{1}[\textit{t} = \textit{k}]) + \gamma_{\textit{0}} \textit{\textit{X}}_{\textit{m0}} + \epsilon_{\textit{mt}}$$

Market Structure: number of stores increase

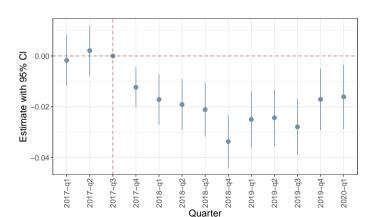

$$log(\textit{numShops}_{\textit{mt}}) = \alpha_{\textit{m}} + \delta_{\textit{t}} + \sum_{\textit{k}} \beta_{\textit{k}} (\log(\textit{distDistrCntr}_{\textit{m}}) \times \mathbb{1}[\textit{t} = \textit{k}]) + \gamma_{\textit{0}} \textit{X}_{\textit{m0}} + \epsilon_{\textit{mt}}$$

Market Structure: number of stores increase


$$log(\textit{numShops}_{\textit{mt}}) = \alpha_{\textit{m}} + \delta_{\textit{t}} + \sum_{\textit{k}} \frac{\beta_{\textit{k}}}{\beta_{\textit{k}}} (\log(\textit{distDistrCntr}_{\textit{m}}) \times \mathbb{1}[\textit{t} = \textit{k}]) + \gamma_{\textit{0}} \textit{\textbf{X}}_{\textit{m0}} + \epsilon_{\textit{mt}}$$

- Explained by entry of stores Details

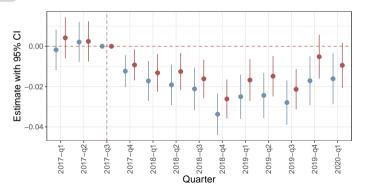
Market Structure: average sales decrease


$$log(\textit{avgSales}_{\textit{mt}}) = \alpha_{\textit{m}} + \delta_{\textit{t}} + \sum_{\textit{k}} \beta_{\textit{k}} (\log(\textit{distDistrCntr}_{\textit{m}}) \times \mathbb{1}[\textit{t} = \textit{k}]) + \gamma_{\textit{0}} \textbf{\textit{X}}_{\textit{m0}} + \epsilon_{\textit{mt}}$$

Market Structure: average sales decrease

$$log(\textit{avgSales}_{\textit{mt}}) = \alpha_{\textit{m}} + \delta_{\textit{t}} + \sum_{\textit{k}} \beta_{\textit{k}} (\log(\textit{distDistrCntr}_{\textit{m}}) \times \mathbb{1}[\textit{t} = \textit{k}]) + \gamma_{\textit{0}} \textbf{\textit{X}}_{\textit{m0}} + \epsilon_{\textit{mt}}$$

- What explains the decrease?



Market Structure: average sales decrease

$$log(\textit{avgSales}_{\textit{mt}}) = \alpha_{\textit{m}} + \delta_{\textit{t}} + \sum_{\textit{k}} \beta_{\textit{k}} (\log(\textit{distDistrCntr}_{\textit{m}}) \times \mathbb{1}[\textit{t} = \textit{k}]) + \gamma_{\textit{0}} \textit{\textit{X}}_{\textit{m0}} + \epsilon_{\textit{mt}}$$

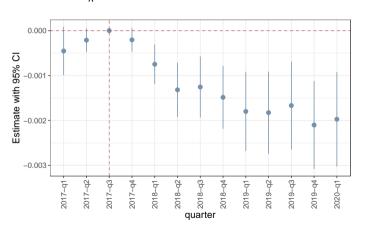
- What explains the decrease? 75% of decrease explained by business stealing

► More: aggregate sales

Selection: quality

- Exploit panel-nature of our data to estimate firm-specific quality γ_i .

$$log(sales_{tj_{(I)}}) = \phi_{AgeBin_j} + \alpha_{tl} + \gamma_j + \epsilon$$


Construct municipality-quarter level quality

$$quality_{mt} = \frac{\sum\limits_{j \in \Omega} \gamma_{jt}}{\#\Omega}$$

- Variation coming from change in composition of operating firms

Selection: quality decreases

$$quality_{mt} = \alpha_m + \delta_t + \sum_k \beta_k (\log(\textit{distDistrCntr}_m) \times \mathbb{1}[t=k]) + \gamma_0 \textbf{\textit{X}}_{m0} + \epsilon_{mt}$$

Market fragmentation: gasoline expenditure drops

	Exte	nsive Margin	Intensive Margin		
Dependent Variables:	Gasoline (1)	Public Transport (2)	Log Gasoline Lts (3)	Log Public Transport (4)	
Variables					
Log Gasoline Price	-0.323*	0.395**	-0.965**	0.367	
	(0.176)	(0.186)	(0.415)	(0.979)	
Log Gasoline Price \times Income	0.032***	-0.017***	0.068***	0.042***	
	(0.010)	(0.005)	(0.020)	(0.007)	
Controls	Yes	Yes	Yes	Yes	
Fixed-effects					
State-Year	Yes	Yes	Yes	Yes	
Municipality	Yes	Yes	Yes	Yes	
Fit statistics					
N Observations	190,974	190,974	87,344	97,207	
Dep. Var. Mean	39	64	89.5	78.6	

Clustered (Municipality) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Market fragmentation: substitution across and within store format

	Extensive Margin		Intensi	Within M&P	
Dependent Variables:	M&P Shops (1)	Supermarkets (2)	Log M&P Shops (3)	Log Supermarkets (4)	Distance Traveled (5)
Variables					
Log Gasoline Price	0.052	-0.109	-1.14	-1.05**	-1.87***
	(0.119)	(0.192)	(0.694)	(0.504)	(0.543)
${\sf Log\ Gasoline\ Price}\times{\sf Income}$	-0.014***	0.010***	-0.031***	0.066***	
	(0.004)	(0.003)	(0.006)	(0.020)	
Controls	Yes	Yes	Yes	Yes	Yes
Fixed-effects					
State-Year	Yes	Yes	Yes	Yes	
Municipality	Yes	Yes	Yes	Yes	Yes
Quarter-Year					Yes
Fit statistics					
N Observations	190,974	190,974	175,653	130,520	27,371
Dep. Var. Mean	0.910	0.680	145.7	113.5	4,676.85

Clustered (Municipality) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Ruling out other potential mechanisms

- Real wages falling Details
- Employment falling Details
- Prices changing at supermarkets relative to m&p shops Details
- Upstream supplier modifying supply chain: would bias against our results

Roadmap

Motivation

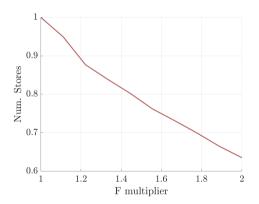
Context

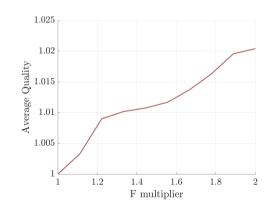
Conceptual Framework

Data

Empirical Analysis
Market Structure
Selection of firms
Market Fragmentation

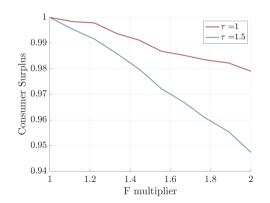
Mexico City Policy

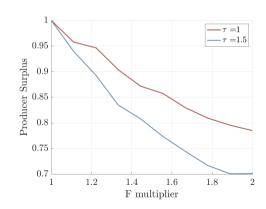

Conclusion


Regularization of mom-and-pop shops

- 2021 Mexico City: program to "regularize" mom-and-pop shops
- Stores had to obtain certificate for operation
- Bureaucratic process involving: payment for certificate (\sim 100 dollars) and proof of documentation (pictures, ID, property tax payments, ownership of sotre's location, etc.)
- ⇒ effectively increasing fixed costs for store owners.

Trade-off between quantity and quality


- As fixed costs of entry increase ⇒ less stores enter the market and the average quality increases.



Consumer and Producer Welfare

- Consumers: hurt by less stores (predominant effect)
- Producers: hurt by higher fixed costs
- Welfare decrease larger in a world with high transport costs

Roadmap

Motivation

Context

Conceptual Framework

Data

Empirical Analysis

Market Structure

Selection of firms

Market Fragmentation

Mexico City Policy

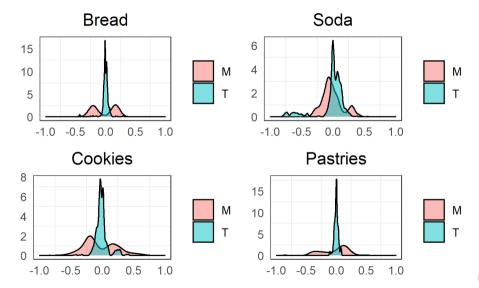
Conclusion

Conclusion

- Increases in transport costs lead to:
 - ↑ number of stores (explained by entry)
 - → average firm size (large business stealing effect)
 - ↓ agreggate quality (positive correlation with fixed costs of entry)
- As transport costs increase ⇒ firms are able to enter because of their low fixed cost of entry.
- Evaluated Mexico City policy that increases fixed costs of entry
 - Trade-off between quantity and quality
 - Consumer and producer surplus decreases under higher F
 - Welfare decrease larger in a world with high transport costs

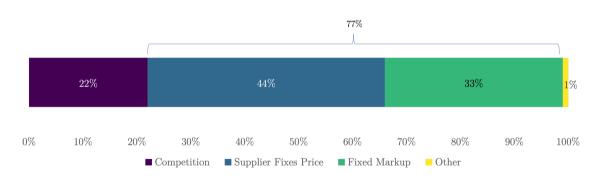
- Stephen J Anderson, Leonardo Iacovone, Shreya Kankanhalli, and Sridhar Narayanan. Modernizing retailers in an emerging market: Investigating externally focused and internally focused approaches. *Journal of Marketing Research*, 2022.
- David Atkin, Benjamin Faber, and Marco Gonzalez-Navarro. Retail globalization and household welfare: Evidence from mexico. *Journal of Political Economy*, 126(1):1–73, 2018.
- Abhijit Banerjee, Emily Breza, Robert Townsend, and Diego Vera-Cossio. Access to credit and productivity: Evidence from thai villages. Technical report, Working Paper, 2019.
- Abhijit Banerjee, Esther Duflo, and Nancy Qian. On the road: Access to transportation infrastructure and economic growth in china. *Journal of Development Economics*, 145: 102442, 2020.
- Vittorio Bassi and Aisha Nansamba. Screening and signalling non-cognitive skills: experimental evidence from uganda. *The Economic Journal*, 132(642):471–511, 2022.
- Francisco Campos, Markus Goldstein, and David McKenzie. Helping firms realize the benefits of (partial) formalization. Technical report, World Bank, 2018.
- Suresh De Mel, David McKenzie, and Christopher Woodruff. Returns to capital in microenterprises: evidence from a field experiment. *The Quarterly Journal of Economics*, 123(4):1329–1372. 2008.

- Suresh De Mel, David McKenzie, and Christopher Woodruff. Business training and female enterprise start-up, growth, and dynamics: Experimental evidence from sri lanka. *Journal of Development Economics*, 106:199–210, 2014.
- Dave Donaldson. Railroads of the raj: Estimating the impact of transportation infrastructure. *American Economic Review*, 108(4-5):899–934, 2018.
- Erica Field, Seema Jayachandran, and Rohini Pande. Do traditional institutions constrain female entrepreneurship? a field experiment on business training in india. *American Economic Review*, 100(2):125–29, 2010.
- Pinelopi K Goldberg and Tristan Reed. Income distribution, international integration, and sustained poverty reduction. Working Paper 27286, National Bureau of Economic Research. May 2020.
- Sean Higgins. Financial technology adoption. Job Market Paper, 2018.
- Robert Jensen and Nolan H Miller. Market integration, demand, and the growth of firms: Evidence from a natural experiment in india. *American Economic Review*, 108(12): 3583–3625. 2018.
- David Lagakos. Explaining cross-country productivity differences in retail trade. *Journal of Political Economy*, 124(2):579–620, 2016.


- Miguel Ángel Talamas Marcos. *Essays on Firms and Labor Markets in Developing Countries*. PhD thesis, Northwestern University, 2022.
- David McKenzie. Identifying and spurring high-growth entrepreneurship: Experimental evidence from a business plan competition. *American Economic Review*, 107(8): 2278–2307, 2017.

David McKenzie and Yaye Seynabou Sakho. Does it pay firms to register for taxes? the

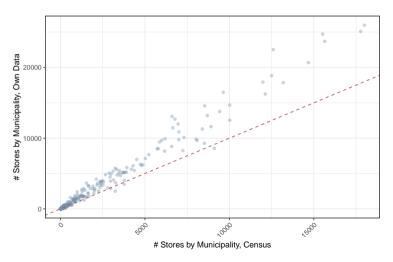
- impact of formality on firm profitability. *Journal of Development Economics*, 91(1):15–24, 2010.
- Chad Syverson. Market structure and productivity: A concrete example. *Journal of political Economy*, 112(6):1181–1222, 2004a.
- Chad Syverson. Product substitutability and productivity dispersion. *Review of Economics and Statistics*, 86(2):534–550, 2004b.
- Wei You. The economics of speed: the electrification of the streetcar system and the decline of mom-and-pop stores in boston, 1885–1905. *American Economic Journal: Applied Economics*, 13(4):285–324, 2021.


APPENDIX

Price Dispersion in traditional and modern retailers

Pricing in small stores

Almost 80% of firms report fixed markups

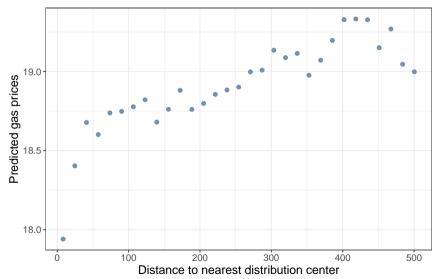


Source: ENAMIN, 2010. n = 3,488

▶ Return

Representativeness of Data

Our data contains more stores than those in the 2019 economic census.

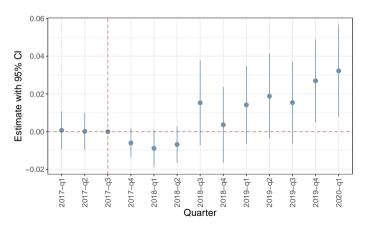


Summary Stats

Statistic	Mean	St. Dev.	Pctl(25)	Pctl(50)	Pctl(75)	Max
# of stores/Month	783,335	26,796	754,139	795,673	799,376	831,255
# Stores/Mun	527.7	1,067	88	206	435	12,854
# Stores/1KPop	8.95	5.78	6.38	8.95	11.3	188.5
Market Share	0.003	0.015	0.0002	0.0005	0.002	1
Month Value USD	223	249	63	136	285	1,790
Month Q	416	432	128	274	551	41,580
Average Price USD	0.54	0.5	0.42	0.51	0.59	27
Informal	83%					
Woman owner	63%					
Owns 1 store	82%					

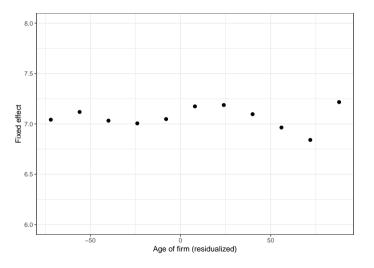
Conversion rate used 1 USD = 18 MXN → Return

Gas prices increased 8.3% in places furthest away

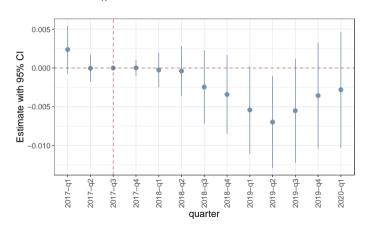

IV estimates • Return

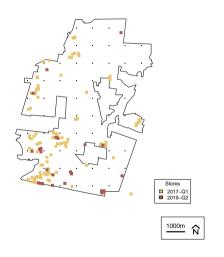
	First Stage	IV				
Dependent Variables:	Log Gasoline Price (1)	Log #Stores (2)	Log Average Sales (3)	Log Sales (4)	Entry (5)	Exit (6)
Variables						
Log Distance Distr. Center \times Post	0.006*** (0.0006)					
Log Gasoline Price		4.88*** (1.12)	-3.31*** (0.631)	1.57 (1.16)	13.4*** (2.49)	-0.732 (2.29)
Controls	Yes	Yes	Yes	Yes	Yes	Yes
Fixed-effects						
Quarter-Year	Yes	Yes	Yes	Yes	Yes	Yes
Municipality	Yes	Yes	Yes	Yes	Yes	Yes
Fit statistics						
N Observations	27,767	27,767	27,767	27,767	27,767	27,767
N Stores F-Stat	1,114,665 112.014	1,114,665	1,114,665	1,114,665	1,114,665	1,114,665
Dep. Var. Mean	0.791	438.2	441.0	253,237.6	17.2	12

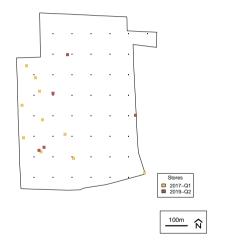
Clustered (Municipality) standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1


Market Structure: no change in aggregate sales

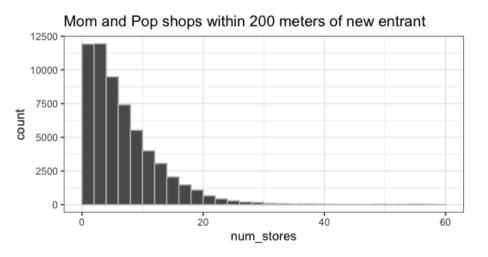
$$\textit{log}(\textit{numShops}_{\textit{mt}}) = \alpha_{\textit{m}} + \delta_{\textit{t}} + \sum_{\textit{k}} \textcolor{red}{\beta_{\textit{k}}} (\log(\textit{distDistrCntr}_{\textit{m}}) \times \mathbb{1}[\textit{t} = \textit{k}]) + \gamma_0 \textit{\textbf{X}}_{\textit{m0}} + \varepsilon_{\textit{mt}}$$


Correlation between age and FE


Selection: stores entering have lower fixed costs


$$\textit{rentIndex}_{\textit{mt}} = \alpha_{\textit{m}} + \delta_{\textit{t}} + \sum_{\textit{k}} \frac{\beta_{\textit{k}}}{\beta_{\textit{k}}} (\log(\textit{distDistrCntr}_{\textit{m}}) \times \mathbb{1}[\textit{t} = \textit{k}]) + \gamma_{\textit{0}} \textit{\textbf{X}}_{\textit{m0}} + \epsilon_{\textit{mt}}$$

Average distance strategy

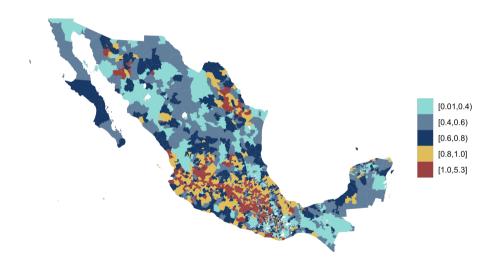

▶ Return

Stores per ring

	0-200m	200-400m	400-600m	600-800m	800m-1km
Mean	7.6	16.88	24.21	30.23	35.46
Median	6	13	18	22	24

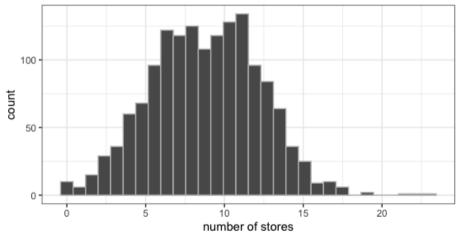
▶ Return

Zoom into 200 meter ring



Type of Payment Across Store Formats

- Mom and Pop stores do not seem to give credit to their customers


	Mom and Pop	Street market	Specialty shops	Convenience stores	Supermarkets
Cash	98.05	99.67	99.69	99.23	95.9
Card	0.02	0.05	0.08	0.68	4.01
Loan	1.93	0.29	0.22	0.09	0.08

Number of stores per 1K people Return

On average, there is \sim 1 store per 100 people

Number of stores by municipality Adjusted by Population (per 1,000 people)

Share of Total Food Retail in Traditional Stores by Country

Traditional mom-and-pop stores represent an important share of total food retail in many countries

Model with Realistic Geography

- City with N blocks indexed by $i, j \in \{1, ..., N\}$
- Each block i has mass M_i consumers. Consume 1 unit of homogeneous good with fixed price p
- Assume that at most one store can operate per block *j*
- Utility of consumer ω living in i consuming in block j: $u_{ij}(\omega) = p^{-1}\tau_{ii}^{-1}\epsilon_{ij}(\omega)$
 - τ_{ii} : transport cost of going from $i \rightarrow j$
 - $\epsilon_{ij}(\omega) \sim \textit{Frechet}(\theta)$: idiosyncratic factors that push a consumer from i to consume in j
- Consumer chooses which block to consume *i* to maximize:

$$\max_{j} \quad u_{ij}(\omega) = \max_{j} \quad p^{-1} \tau_{ij}^{-1} \epsilon_{ij}(\omega)$$

Demand for Firms, Supply, and Equilibrium

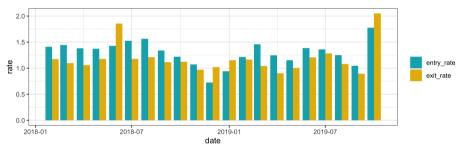
- Frechet distribution implies share of consumers from *i* that consume in *j* is:

$$oldsymbol{s}_{ij} = rac{\left(au_{ij}
ight)^{- heta}}{\sum_{j'} \left(au_{ij'}
ight)^{- heta}}$$

- θ is the elasticity of consumption to transport costs
- Total demand for a store in *j* is:

$$D_j = \sum_i D_{ij} = \sum_i M_i s_{ij}$$

- Assume firms earn fixed markups μ exogenously set by upstream supplier, but has to pay fixed cost of $F_i \geq 0$. Given set of operating firms $\varphi \equiv \{1,...,J\}$


$$\pi_i(\varphi) = \mu D_i(\varphi) - F_i$$

- Equilibrium is market structure of active firms φ such that:

$$\pi_j(arphi) \geq 0 \quad orall j$$

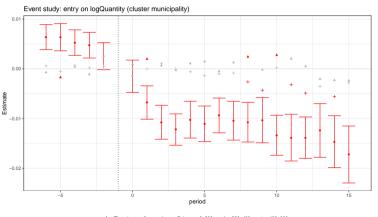
Low cost of entry

- In any given month, there are on average \sim 790, 000 mom and pop shops, \sim 10, 300 firms enter and \sim 9, 400 firms exit.

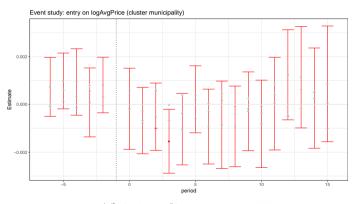
- The annual entry rate is \sim 16% and the annual exit rate is \sim 14.7%.
 - Our estimates are in line with other papers that report entry and exit rates for informal and micro enterprises in developing countries: Vietnam (McCaig and Pavcnik 2021), India (Field et al. 2013).
 - Higher than formal firms in developing countries (\sim 7%), manufacturing firms in developing countries (\sim 7.4), firms in developed countries.

Business Stealing: Details

- Start from an equilibrium with J firms operating $\varphi = \{1, ..., J\}$
- Suppose a firm J+1 enters $\Rightarrow \varphi' = \{1, ..., J, J+1\}$. What is the effect on the incumbents? For a given incumbent $j \in \varphi$:


$$\pi_{j}(\varphi') - \pi_{j}(\varphi) = -\mu \sum_{i} \underbrace{s_{ij}(\varphi)}_{\text{initial share } i \to j} \times \underbrace{s_{iJ+1}(\varphi')}_{\text{new share } i \to J+1} < 0$$

- Entry by J + 1 affects all firms but disproportionately affects firms from which it steals "more" business, i.e, firms that are closer
 - Model predicts decreasing effect of entry with respect to distance


the effect is driven by quantity...

$$\textit{log}(\textit{quantity})_{\textit{imtr}} = \alpha_{\textit{i}} + \alpha_{\textit{mt}} + \sum_{\tau = -6}^{15} \sum_{\rho} \frac{\beta_{\tau \textit{r}}}{1} \mathbb{1}\{t = \tau\} \times \mathbb{1}\{r = \rho\} + \epsilon_{\textit{imtr}}$$

and not by price

$$log(\textit{avgPrice})_{\textit{imtr}} = \alpha_{\textit{i}} + \alpha_{\textit{mt}} + \sum_{\tau = -6}^{15} \sum_{\rho} \beta_{\tau \textit{r}} \mathbb{1}\{t = \tau\} \times \mathbb{1}\{r = \rho\} + \epsilon_{\textit{imtr}}$$

▶ Return 23/34

Welfare

- Defining Consumer Market Access for individuals in block i as:

$$extit{CMA}_i(arphi) \equiv \sum_{j' \in arphi} ig(au_{ij'}ig)^{- heta}$$


- Consumer welfare given an equilibrium market structure φ is given by:

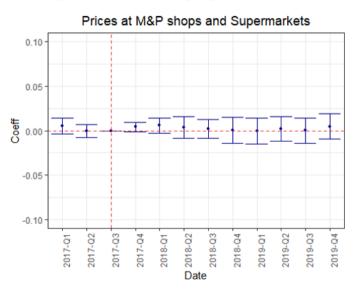
$$extit{CS}_i(arphi) = \mathbb{E}\left[\max_j u_{ij}(\omega) | arphi
ight] = \Gamma\left[extit{CMA}_i(arphi)
ight]^{1/ heta}$$

- where Γ is a constant
- Consumers like convenience! The closer operating firms are, the happier they are
- Aggregate consumer welfare is a weighted average of consumer surplus:

$$extit{CS}(arphi) = \Gamma \sum_i rac{ extit{M}_i}{\sum_i extit{M}_j} \left[extit{CMA}_i(arphi)
ight]^{1/ heta}$$

Prices are not changing

Income and employment not changing

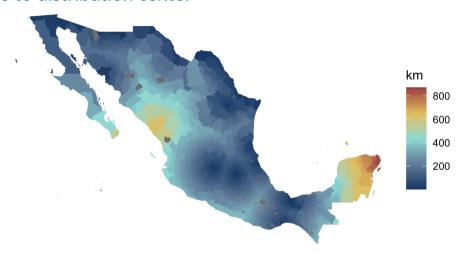

Dependent Variables: Model:	log(meanIncome) (1)	log(employment) (2)	log(meanIncome) (3)	log(employment) (4)
log(priceGas)	0.0626	0.0124	-0.0382	-1.026
	(1.204)	(1.529)	(1.092)	(1.128)
Controls			Yes	Yes
Fixed-effects				
municipality	Yes	Yes	Yes	Yes
quarter:year	Yes	Yes	Yes	Yes
Fit statistics				
Observations	14,961	17,339	13,733	13,733
Dependent variable mean	306.59	11,356.6	303.80	14,321.8
F-test (1st stage), log(priceGas)	192.90	311.82	234.79	234.79

Clustered (municipality) standard-errors in parentheses

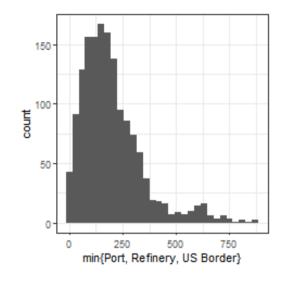
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Prices of food retail goods not changing

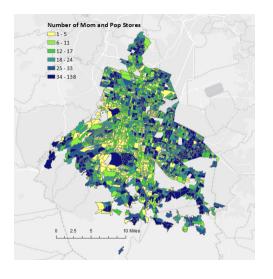
Prices at traditional shops not changing



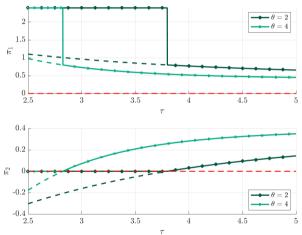
Prices at modern supermarkets not changing

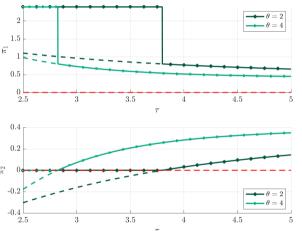


Distance to distribution center



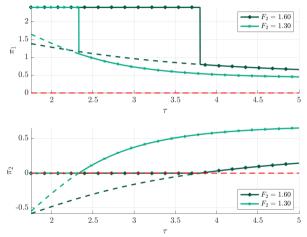
Histogram instrument


Number of Mom and Pop Stores per Block in Mexico City

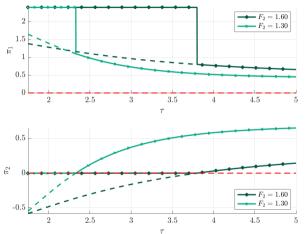

What exacerbates τ 's effect? Simulation: varying τ for $\neq \theta$

- Two blocks. Everything is symmetric, except $\gamma_1 > \gamma_2$.

What exacerbates τ 's effect? Simulation: varying τ for $\neq \theta$


- Two blocks. Everything is symmetric, except $\gamma_1 > \gamma_2$.

- Higher $\theta \Rightarrow$ store in block 2 enters the market at lower values of τ .


What exacerbates τ 's effect? Simulation: varying τ for $\neq F$

- Two blocks. Everything is symmetric, except $\gamma_1 > \gamma_2$.

What exacerbates τ 's effect? Simulation: varying τ for $\neq F$

- Two blocks. Everything is symmetric, except $\gamma_1 > \gamma_2$.

- Lower $F \Rightarrow$ store in block 2 enters the market at lower values of τ .

